Калькулятор расхода воздуха

Содержание
  1. АППАРАТУРА
  2. Каким прибором измеряют скорость движения воздуха
  3. Технические расчеты бесплатно и анонимно =)
  4. Распределение объемов вытяжки по помещениям и определение площади поперечного сечения каналов
  5. Калькулятор расчета минимальной площади сечения вентиляционной отдушины
  6. Калькулятор расчета диаметра круглого канала, эквивалентного площади прямоугольного
  7. Аэродинамический расчет воздуховодов
  8. Формула для расчета потерь давления при движении воздуха по воздуховоду:
  9. Таблица удельных потерь давления на трение в воздуховоде.
  10. Особые расчетные указания
  11. ОБРАБОТКА РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ
  12. Расчет нормального воздухообмена для эффективной вентиляции квартиры или дома
  13. Калькулятор расчета требуемых объемов притока воздуха для нормальной вентиляции
  14. 2 Определение размеров поперечного сечения
  15. Зачем измеряют скорость воздуха
  16. МЕТОД ВЫБОРА ТОЧЕК ИЗМЕРЕНИЙ
  17. Расчет скорости воздуха в воздуховоде по формуле и таблицам
  18. Простой способ расчета скорости воздуха в воздуховоде
  19. Примеры расчета скорости воздуха в квадратном воздуховоде
  20. Формулы для расчётов
  21. При помощи данных калькуляторов, Вы сможете подобрать: вентилятор на вытяжной зонт пристенного типа; островного; потери даления в воздуховоде; кратность воздухообмена для помещений и.т. д.
  22. По какой формуле происходит расчёт L (m³/ч) = S (m²) × V (m/c) × 3600
  23. Формула для круглого вытяжного зонта L (m³/ч) = πR² × V (m/c) × 3600
  24. Диаметр воздуховода для круглого сечения
  25. Диаметр воздуховода для квадратного сечения
  26. Полезные материалы
  27. Монтаж систем чиллер-фанкойл
  28. О Компании
  29. ПОДГОТОВКА К ИСПЫТАНИЯМ

АППАРАТУРА

2.1. Для аэродинамических испытаний. вентиляционных систем должна применяться следующая аппаратура:

а) комбинированный приемник давления -для измерения динамических давлений потока при скоростях движения воздуха бо­лее 5 м/с и статических давлений в установившихся потоках (черт. 3);

б) приемник полного давления — для измерения полных дав­лений потока при скоростях движения воздуха более 5 м/с (черт. 4);

в) дифференциальные манометры класса точности от 0,5 до 1,0 по ГОСТ 11161-71, ГОСТ 18140-77 и тягомеры по ГОСТ 2648-78 — для регистрации перепадов давлений;

г) анемометры по ГОСТ 6376-74 и термоанемометры -для измерения скоростей воздуха менее 5 м/с;

д) барометры класса точности не ниже 1,0 — для измерения давления в окружающей среде;

ж) психрометры класса точности не ниже 1,0 по ГОСТ 6353-52 и психрометрические термометры по ГОСТ 15055-69 -для измерения влажности воздуха.

Основные размеры приемной части комбинированного

* Диаметр d не должен превышать 8 % внутреннего диаметра круглого или ширины (по внутреннему обмеру) прямоугольного воздуховода.

2.2. Конструкции приборов, применяемых для измерения ско­ростей и давлений запыленных потоков, должны позволять их очи­стку от пыли в процессе эксплуатации.

2.3. Для проведения аэродинамических испытаний в пожаровзрывоопасных производствах должны применяться приборы, соответствующие категории и группе производственных помещений.

Основные размеры приемной части приемника

* Диаметр d не должен превышать 8 % внутреннего диаметра круглого или ширины (по внутреннему обмеру) прямоугольного воздуховода.

Каким прибором измеряют скорость движения воздуха

Все устройства такого типа компактны и несложны в использовании, хотя и тут есть свои тонкости.

Приборы для измерения скорости воздуха:

  • Крыльчатые анемометры
  • Температурные анемометры
  • Ультразвуковые анемометры
  • Анемометры с трубкой Пито
  • Дифманометры
  • Балометры

Крыльчатые анемометры одни из самых простых по конструкции устройств. Скорость потока определяется скоростью вращения крыльчатки прибора.

Температурные анемометры имеют датчик температуры. В нагретом состоянии он помещается в воздуховод и по мере его остывания определяют скорость воздушного потока.

Ультразвуковыми анемометрами в основном измеряют скорость ветра. Они работают по принципу определения разницы частоты звука в выбранных контрольных точках воздушного потока.

Анемометры с трубкой Пито оснащены специальной трубкой малого диаметра. Ее помещают в середину воздуховода, тем самым измеряя разницу полного и статического давления. Это одни из самых популярных устройств для измерения воздуха в воздуховоде, но при этом у них есть недостаток — невозможность использования, при высокой концентрации пыли.

Дифманометры могут измерять не только скорость, а и расход воздуха. В комплекте из трубкой Пито, этим устройством можно измерять потоки воздуха до 100 м/с.

Балометры наиболее эффективны при измерениях скорости воздуха на выходе из вентиляционных решеток и диффузоров. Они имеют раструб, который захватывает весь воздух, выходящий из вент-решетки, тем самым сводя погрешность измерения к минимуму.

Технические расчеты бесплатно и анонимно =)

  • Отопление
    • Расчет тепловой нагрузки по укрупненным показателям МДК 4-05.2004
    • Расчет диаметра коллектора
    • Расчет расширительного бака для отопления
    • Расчет количества ступеней теплообменника ГВС
    • Расчет нагрева ГВС
    • Расчет длины компенсаторов температурных удлинений трубопроводов
    • Расчет скорости воды в трубопроводе
    • Разбавление пропилен и этиленгликоля
    • Расчет диаметра балансировочной шайбы
    • Проверка работоспособности элеваторной системы отопления
    • кг/с в м3/ч. Перевод массового расхода среды в объемный.
    • Онлайн замена радиаторов Prado на Purmo
    • Примеры гидравлических расчетов систем отопления
    • Sanext
      • Расчет диаметра и настройки клапана Sanext DPV
      • Расчет этажного коллектора системы отопления Sanext
      • Маркировка РКУ Sanext
      • Замена клапана Danfoss AB-QM на Sanext DS
      • Быстрая замена L и T-образных трубок на трубу Стабил
  • Вентиляция
    • Расчет гравитационного давления
    • Расчет расхода воздуха на удаление теплоизбытков
    • Расчет теплоснабжения приточных установок
    • Расчет осушения помещений по методике Dantherm
    • Расчет эквивалентного диаметра и скорости воздуха в воздуховоде
    • Расчет дымоудаления с естественным побуждением
    • Расчет площади воздуховодов и фасонных частей онлайн
    • Расчет естественной вентиляции онлайн
    • Расчет потерь давления на местных сопротивлениях
    • Расчет воздушного отопления совмещенного с вентиляцией
    • Расчет вентиляции в аккумуляторной
    • Расчет температуры приточного и вытяжного воздуха системы вентиляции
    • Расчет углового коэффициента луча процесса
    • Кратности воздухообмена и температуры воздуха
    • Расчет количества облучателей-рециркуляторов медицинских по Р 3.5.1904-04
  • Кондиционирование
    • Расчет мощности кондиционера по теплопритокам в помещение
    • Расчет теплопритоков от солнечной радиации. Инсоляция помещения.
    • Расчет теплопоступлений от источников искусственного освещения
    • Расчет теплопоступлений от оборудования
    • Расчет теплопоступлений от людей
    • Расчет теплопритоков и влаги от остывающей еды
    • Расчет теплопоступлений от инфильтрации воздуха
    • Расчет полной теплоты из явной теплоты
  • Водоснабжение
    • Расчет сопротивления в трубопроводе ВК
    • Расчет глубины промерзания грунта
    • Расчетные расходы дождевых вод
  • Газоснабжение
    • Технико-экономический расчет тепла и топлива
    • Расчет диаметра газопровода
    • Расчет теплотворной способности энергоносителей
  • Смета
    • Расчет площади окраски металлического профиля
    • Расчет площади окраски чугунных радиаторов
    • Расчет расхода теплоизоляции с учетом коэффициента уплотнения
    • Расчет количества досок из кубометра древесины
    • Примеры смет
      • Пример сметы на авторский надзор
      • Пример сметы на перебазирование техники
      • Пример расчета коэффициента к ФОТ при сверхурочной работе.
      • Пример расчета коэффициента к ФОТ при многосменном режиме работы.
      • Пример расчета коэффициента к ФОТ при вахтовом методе работы.
      • Списание материалов в строительстве. Пример формы отчета.
      • Списание материалов в строительстве. Пример формы ведомости.
  • Разные
    • Конвертер технических величин
    • Проверка показаний теплосчетчика онлайн
    • Расчет категории склада для хранения муки
    • Линейная интерполяция онлайн
    • Онлайн расчет маржинальности и точки безубыточности
    • НДС калькулятор онлайн, расчет %
    • Юнит-экономика онлайн калькулятор
    • Расчет стоимости покупки автомобиля по доходу семьи
    • Расчет стоимости системы учета энергоресурсов
    • Калькулятор технологии домашнего виноделия
    • На всю котлету
    • Закон Ома
    • Расчет фундамента
    • Статьи
      • Нормы
      • Сравнение типов отопительных приборов
      • Настройка AutoCAD
      • Температура воздуха в Краснодаре за 10 лет зимой
      • Сравнение ИП с ООО
  • Вход

Распределение объемов вытяжки по помещениям и определение площади поперечного сечения каналов

Итак, найден объем воздуха, который должен поступить помещения квартиры в течение часа и, соответственно, выведен за это же время.

Далее, исходят их количества вытяжных каналов, имеющихся (или планируемых к организации – при проведении самостоятельного строительства) в квартире или доме. Полученный объем необходимо распределить между ними.

Для примера, вернемся к таблице выше. Через три вентиляционных канала (кухня, санузел и ванная) необходимо отвести 240 кубометров воздуха в час. При этом из кухни по расчетам должно отводиться не менее 125 м³, из ванной и туалета по нормативам – не менее, чем по 25 м³. Больше – пожалуйста.

Поэтому напрашивается такое решение: кухне «отдать» 140 м³/час, а оставшееся — разделить поровну между ванной и санузлом, то есть по 50 м³/час.

Ну а зная объем, который необходимо отвести в течение определённого времени – несложно подсчитать ту площадь вытяжного канала, которая гарантированно справится с задачей.

Правда, для расчетов требуется еще и значение скорости воздушного потока. А она тоже подчиняется определённым правилам, связанным с допустимыми уровнями шума и вибрации. Так, скорость потока воздуха на вытяжных вентиляционных решетках при естественной вентиляции должна быть в пределах диапазона 0,5÷1,0 м/с.

Приводить формулу расчета здесь не будем – сразу предложим читателю воспользоваться онлайн-калькулятором, который определит требуемую минимальную площадь сечения вытяжного канала (отдушины).

Калькулятор расчета минимальной площади сечения вентиляционной отдушины

Обладая элементарными знаниями в геометрии, полученную площадь несложно привести к размерам прямоугольника. Правда, при этом должно соблюдаться условие – соотношение длинной и короткой стороны – не более, чем 3:1.

Нередко вентиляционные решетки имеют и круглое окно. Значит, необходимо пересчитать площадь сечения в диаметр. Или же требуется сделать переход от прямоугольного сечения на круглое. В обоих случаях будет полезен третий калькулятор, предназначенный специально для такой цели.

Калькулятор расчета диаметра круглого канала, эквивалентного площади прямоугольного

Полученное значение будет ориентиром при приобретении стандартных деталей с круглым сечением. Естественно, округление при этом делается в бо́льшую сторону.

Объем данной статьи не позволяет рассмотреть все нюансы организации вентиляции жилого дома или квартиры. Но в этом и нет особой нужды, так как на страницах нашего портала уже имеется специальная публикация, в которой проблемы естественной вентиляции рассматриваются со всеми подробностями.

Аэродинамический расчет воздуховодов

Аэродинамический расчет воздуховодов — один из основных этапов проектирования системы вентиляции, т.к. он позволяет рассчитать сечение воздуховода (диаметр — для круглого, и высоту с шириной для прямоугольного).

Площадь сечения воздуховода выбирается по рекомендуемой скорости для данного случая (зависит от расхода воздуха и от размещения рассчитываемого участка).

F = G/(ρ·v), м²

где G — расход воздуха на рассчитываемом участке воздуховода, кг/сρ — плотность воздуха, кг/м³v — рекомендуемая скорость воздуха, м/с (см. таблицу 1)

Таблица 1. Определение рекомендуемой скорости воздуха в механической системе вентиляции.

При системе вентиляции с естественным побуждением скорость воздуха принимается 0,2-1 м/с. В некоторых случаях скорость может достигать 2 м/с.

Формула для расчета потерь давления при движении воздуха по воздуховоду:

ΔP = ΔPтр + ΔPм.с. = λ·(l/d)·(v²/2)·ρ + Σξ·(v²/2)·ρ,

В упрощенном виде формула потерь давления воздуха в воздуховоде выглядит так:

ΔP = Rl +Z,

Удельные потери давления на трение можно рассчитать по формуле:R = λ·(l/d)·(v²/2)·ρ, [Па/М]

l — длина воздуховода, м Z — потери давления на местных сопротивлениях, ПаZ = Σξ·(v²/2)·ρ,

Удельные потери давления на трение R можно также определить с помощью таблицы. Достаточно знать расход воздуха на участке и диаметр воздуховода.

Таблица удельных потерь давления на трение в воздуховоде.

Верхняя цифра в таблице — расход воздуха, а нижняя -удельные потери давления на трение (R). Если же воздуховод прямоугольный, то значения в таблице ищутся исходя из эквивалентного диаметра. Эквивалентный диаметр можно определить по следующей формуле:

dэкв = 2ab/(a+b)

где a и b — ширина и высота воздуховода.

В данной таблице приведены значения удельных потерь давления при коэффициенте эквивалентной шероховатости 0,1 мм (коэффициент для стальных воздуховодов). Если воздуховод изготовлен из другого материала — то табличные значения надо скорректировать по формуле:

ΔP = Rlβ + Z,

где R — удельные потери давления на трениеl — длина воздуховода, мZ — потери давления на местных сопротивлениях, Паβ — поправочный коэффициент, учитывающий шероховатость воздуховода. Его значение можно взять из таблицы ниже.

Также необходимо учитывать потери давления на местные сопротивления. Коэффициенты местных сопротивлений а также методику расчета потерь давления можно взять из таблицы в статье «Расчет потерь давления в местных сопротивлениях системы вентиляции. Коэффициенты местных сопротивлений.» А динамическое давление определяется из таблицы удельных потерь давления на трение (таблица 1).

Чтобы определить размеры воздуховодов при естественной тяге, используют величину располагаемого давления. Располагаемое давление — это то давление, которое создается за счет разности температур приточного и уходящего воздуха, иными словами — гравитационное давление.

Определяются размеры воздуховодов в естественной системе вентиляции с помощью уравнения:

где ΔPрасп — располагаемое давление, Па 0,9 — повышающий коэффициент для запаса мощности n — количество участков воздуховодов на расчетной ветке

При системе вентиляции с механическим побуждением воздуха, воздуховоды подбираются по рекомендуемой скорости. Далее рассчитываются потери давления по расчетной ветке, и по готовым данным (расход воздуха и потери давления) подбирается вентилятор.

Особые расчетные указания

Кратность обновления воздушных масс напрямую зависит от типа помещения. К примеру, в детской комнате этот показатель равен единице, в то время как в кухонной зоне, оборудованной электроплитой, он составит около 60 м. куб. в час. Если же в кухне располагается газовая печь или котел, работающий на твердом топливе, то тогда к полученному показателю необходимо добавить еще 100 метров кубических. В ванной и туалете кратность воздухообмена должна составлять 25 кубометров.

Естественно, в нежилых помещениях и зонах типа кладовки, лоджии или гардеробной этот показатель соответствует 0,2 кубического метра за один час. Такую же кратность рекомендуется закладывать и в том случае, если в конкретном помещении не живут люди, не ведутся никакие работы и не функционирует способное излучать тепло оборудование.

Кроме того, следует учитывать и площадь жилого помещения, которая приходится на одного жителя. Так, если она превышает 20 квадратных метров, то в комнатах должен быть обеспечен часовой приток чистого воздуха на 30 кубометров. Меньшая квадратура и полное отсутствие возможности проветривания помещения является поводом для того, чтобы повысить этот показатель до 60 кубометров. Подобные рекомендации базируются на том, что за один час каждый квадратный метр жилого помещения должен обеспечиваться притоком, равным 3 метрам кубическим.

Проведя все необходимые вычисления и получив конечный результат, следует сверить его с информацией, которая приводится в разделе «Вентиляция и кондиционирование» СНиП.

https://youtube.com/watch?v=ISJdLrFaExc

ОБРАБОТКА РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ

5.1. На основе величин, измеренных в соответствии с програм­мой, определяют:

относительную влажность перемещаемого воздуха j , %;

плотность перемещаемого воздуха р, кг/м 3 (кгс · с 2 /м 4 );

скорости движения воздуха v , м/с;

расход воздуха L , м 3 /с;

потери полного давления в вентиляционной сети или в отдель­ных ее элементах D р , кПа (кгс/м 2 );

коэффициент потерь давления вентиляционной сети или ее элемента z .

5.2. Относительную влажность перемещаемого воздуха определяют по показаниям сухого и влажного термометров в соответствии с паспортом прибора.

5.3. Плотность перемещаемого воздуха определяют по формуле

где р’ — статическое или полное давление потока, измеренное комбинированным приемником давления или приемником полного давления в одной из точек мерного сечения;

K j — коэффициент, зависящий от температуры и влажности перемещаемого воздуха. Значение K j определяется по табл. 1.

Зависимость коэффициента K j от температуры и влажности перемещаемого воздуха

Источник

Расчет нормального воздухообмена для эффективной вентиляции квартиры или дома

Итак, при нормальной работе вентиляции в течение часа воздух в помещениях должен постоянно меняться. Действующими руководящими документами (СНиП и СанПиН) установлены нормы притока свежего воздуха в каждое из помещений жилой зоны квартиры, а также минимальные объемы его вытяжки через каналы, расположенные на кухне, в ванной в санузле, иногда – и в некоторых других специальных помещениях.

Эти нормативы, опубликованные в нескольких документах, для удобства читателя объединены в одну таблицу, показанную ниже:

Тип помещения Минимальные нормы воздухообмена (кратность в час или кубометров в час)
ПРИТОК ВЫТЯЖКА
Требования по Своду Правил СП 55.13330.2011 к СНиП 31-02-2001 «Одноквартирные жилые дома»
Жилые помещения с постоянным пребыванием людей Не менее однократного обмена объема в течение часа
Кухня 60 м³/час
Ванная, туалет 25 м³/час
Остальные помещения Не менее 0,2 объема в течение часа
Требования по Своду Правил СП 60.13330.2012 к СНиП 41-01-2003 «Отопление, вентиляция и кондиционирование воздуха»
Минимальный расход наружного воздуха на одного человека: жилые помещения с постоянным пребыванием людей, в условиях естественного проветривания:
При общей жилой площади более 20 м² на человека 30 м³/час, но при этом не менее 0,35 от общего объема воздухообмена квартиры в час
При общей жилой площади менее 20 м² на человека 3 м³/час на каждый 1 м² площади помещения
Требования по Своду Правил СП 54.13330.2011 к СНиП 31-01-2003 «Здания жилые многоквартирные»
Спальная, детская, гостиная Однократный обмен объема в час
Кабинет, библиотека 0,5 от объема в час
Бельевая, кладовка, гардеробная 0,2 от объема в час
Домашний спортзал, биллиардная 80 м³/час
Кухня с электрической плитой 60 м³/час
Помещения с газовым оборудованием Однократный обмен + 100 м³/час на газовую плиту
Помещение с твёрдотопливным котлом или печью Однократный обмен + 100 м³/час на котел или печь
Домашняя прачечная, сушилка, гладильная 90 м³/час
Душевая, ванная, туалет или совмещенный санузел 25 м³/час
Домашняя сауна 10 м³/час на каждого человека

Пытливый читатель наверняка заметит, что нормативы по разным документам несколько отличаются. Причем, в одном случае нормы устанавливаются исключительно по размерам (объему) помещения, а другом – по количеству людей постоянно пребывающих в этом помещении. (Под понятием постоянного пребывания имеется в виду нахождение в комнате 2 часа и более).

Поэтому при проведении расчетов вычисления минимального объема воздухообмена желательно проводить по всем доступным нормативам. А затем – выбрать результат с максимальным показателем – тогда ошибки точно не будет.

Провести быстро и точно расчет притока воздуха для всех помещений квартиры или дома поможет первый предлагаемый калькулятор.

Калькулятор расчета требуемых объемов притока воздуха для нормальной вентиляции

Как видите, калькулятор позволяет провести вычисления и от объёмов помещений, и от количества постоянно пребывающих в них людей. Повторимся, желательно провести оба расчета, а затем выбрать из двух получившихся результатов, если они будут различаться, максимальный.

Проще будет действовать, если заранее составить небольшую таблицу, в которой перечислены все помещения квартиры или дома. А затем в нее вносить полученные значения притока воздуха – для комнат жилой зоны, и вытяжки – для помещений, где предусмотрены вытяжные вентиляционные каналы.

К примеру, это может выглядеть так:

Помещение и его площадь Нормы притока   Нормы вытяжки  
1 способ – по объему комнаты 2 способ – по количеству людей 1 способ 2 способ
Гостиная, 18 м² 50
Спальная, 14 м² 39
Детская, 15 м² 42
Кабинет, 10 м² 14
Кухня с газовой плитой, 9 м² 60
Санузел
Ванная
Гардероб-кладовая, 4 м²
Суммарное значение 177
Принимаемое общее значение воздухообмена

Затем суммируются максимальные значения (они в таблице для наглядности выделены подчёркиванием), отдельно для притока и для вытяжки воздуха. А так как при работе вентиляции должно соблюдаться равновесие, то есть сколько воздуха в единицу времени поступило в помещения – столько же должно и выйти, итоговым выбирается также максимальное значение из полученных двух суммарных. В приведенном примере – это 240 м³/час.

Этот значение и должно быть показателем суммарной производительности вентиляции в доме или квартире.

2 Определение размеров поперечного сечения

Не последнюю роль в рассматриваемом вопросе также играет расчет сечения воздуховода вентиляции, который подразумевает вычисление площади всей внутренней системы. В этот перечень входит не только воздуховод, но и примыкающие к нему фасонные изделия (переходники, тройники, трубы, заглушки, дефлекторы и пр.). В последнее время для обустройства вентиляционных систем применяются такие основные и дополнительные элементы:

  1. 1. Купол или зонт вытяжки в виде трапеции, который классифицируется по типу конструкции на островной и пристенный. В данном случае за основу расчета можно будет взять формулу для усеченной пирамиды разных видов.
  2. 2. Воздуховод с круглым, квадратным или прямоугольным поперечным сечением. Для того чтобы выполнить эти вычисления, можно воспользоваться формулами нахождения площади цилиндра, куба или прямоугольного параллелепипеда.
  3. 3. Дефлекторы имеют более сложную конструкцию, поэтому расчет их площади можно будет произвести только после условного разбития элемента на отдельные геометрические фигуры (конус, цилиндр и пр.).
  4. 4. Соединительные конструкции (отводы, переходы, тройники, заглушки и утки) рассчитываются также, как и дефлекторы.

Воспользовавшись приведенными выше способами вычисления, необходимо ознакомиться с особыми рекомендациями, регламентированными принятыми строительными нормами и правилами, после чего можно завершать подбор наиболее точного значения мощностного потенциала системы вентиляции в доме.

  1. 1. Купол или зонт вытяжки в виде трапеции, который классифицируется по типу конструкции на островной и пристенный. В данном случае за основу расчета можно будет взять формулу для усеченной пирамиды разных видов.
  2. 2. Воздуховод с круглым, квадратным или прямоугольным поперечным сечением. Для того чтобы выполнить эти вычисления, можно воспользоваться формулами нахождения площади цилиндра, куба или прямоугольного параллелепипеда.
  3. 3. Дефлекторы имеют более сложную конструкцию, поэтому расчет их площади можно будет произвести только после условного разбития элемента на отдельные геометрические фигуры (конус, цилиндр и пр.).
  4. 4. Соединительные конструкции (отводы, переходы, тройники, заглушки и утки) рассчитываются также, как и дефлекторы.

Расчет вентиляции Breezart для бассейна

Зачем измеряют скорость воздуха

Для систем вентиляции и кондиционирования одним из важнейших факторов является состояние подаваемого воздуха. То есть, его характеристики.

К основным параметрам воздушного потока относятся:

  • температура воздуха;
  • влажность воздуха;
  • расход количества воздуха;
  • скорость потока;
  • давление в воздуховоде;
  • другие факторы (загрязненность, запыленность…).

В СНиПах и ГОСТах описаны нормированные показатели для каждого из параметров. В зависимости от проекта величина этих показателей может изменятся в рамках допустимых норм.

Скорость в воздуховоде строго не регламентируется нормативными документами, но в справочниках проектировщиков можно найти рекомендуемые значение этого параметра. Узнать как рассчитать скорость в воздуховоде, и ознакомится с ее допустимыми значениями можно прочитав данную статью .

Например, для гражданских зданий рекомендуемая скорость движения воздуха по магистральным каналам вентиляции лежит в пределах 5-6 м/с. Правильно выполненный аэродинамический расчет решит задачу подачи воздуха с необходимой скоростью.

Но для того чтобы постоянно соблюдать этот режим скорости, нужно время от времени контролировать скорость перемещения воздуха. Почему? Через некоторое время воздуховоды, каналы вентиляции загрязняются, оборудование может давать сбои, соединения воздуховодов разгерметизируются. Так же, измерения необходимо проводить при плановых проверках, чистках, ремонтах, в общем, при обслуживании вентиляции. Помимо этого, измеряют также скорость движения дымовых газов и др.

МЕТОД ВЫБОРА ТОЧЕК ИЗМЕРЕНИЙ

1.1. Для измерения давлений и скоростей движения воздуха в воздуховодах (каналах) должны быть выбраны участки с распо­ложением мерных сечений на расстояниях не менее шести гидрав­лических диаметров D h , м за местом возмущения потока (отводы, шиберы, диафрагмы и т. п.) и не менее двух гидравлических диа­метров перед ним.

При отсутствии прямолинейных участков необходимой длины допускается располагать мерное сечение в месте, делящем выбран­ный для измерения участок в отношении 3: 1 в направлении дви­жения воз­духа.

Примечание. Гидравлический диаметр определяется по формуле

где F , м 2 и П, м, соответственно, площадь и периметр сечения.

1.2. Допускается размещать мерное сечение непосредственно в месте внезапного расширения или сужения потока. При этом размер мерного сечения принимают соответствующим наименьшему сечению канала.

1.3. Координаты точек измерений давлений и скоростей, а также количество точек определяются формой и размерами мерного сечения по черт. 1 и 2. Максимальное отклонение координат точек измерений от указанных на чертежах не должно превышать ±10 %. Количество измерений в каждой точке должно быть не менее трех.

Координаты точек измерения давлений

и скоростей в воздуховодах

Координаты точек измерения давлений и скоростей

в воздуховодах прямоугольного сечения

1.4. При использовании анемометров время измерения в каждой точке должно быть не менее 10 с.

Расчет скорости воздуха в воздуховоде по формуле и таблицам

В этой статье мы дадим ответ на вопрос — как правильно рассчитать скорости течения воздуха в воздуховодах различной формы.

Здесь приведены формулы расчета скорости воздуха и давления в воздуховоде (круглого или прямоугольного сечения) в зависимости от расхода воздуха и площади сечения. Для быстрого расчета можно воспользоваться онлайн-калькулятором.

Q — расход воздуха, м3/час

S — площадь сечения воздуховода, м2

Простой способ расчета скорости воздуха в воздуховоде

Для расчета величины скорости воздуха нужно объем перемещаемого воздуха в м3/ч разделить на 3600 (количество секунд в часе) и разделить на площадь сечения воздуховода, либо введите значения в поля ниже.

Примеры расчета скорости воздуха в квадратном воздуховоде

Пример № 1 расчета скорости воздуха:

  • объем перемещаемого воздуха = 100 м3
  • воздуховод квадратный 200 мм на 200 мм

Скорость воздуха равна 100 / 3600 / 0,2 / 0,2 = 0,69 м/с

Пример № 2 расчета скорости воздуха:

  • объем перемещаемого воздуха = 500 м3
  • воздуховод квадратный 200 мм на 200 мм

Скорость воздуха равна 500 / 3600 / 0,2 / 0,2 = 3,47 м/с

Формулы для расчётов

Для выполнения вычислений нужно иметь некоторые сведения. Чтобы произвести расчет скорости потока воздуха в воздуховоде, требуется применение формулы ϑ = L / 3600 × F, где:

  • ϑ — скорость воздушных масс в воздуховоде;
  • L — расход воздуха на определенном участке, для которого делаются расчеты (измеряется в м³ \ч);
  • F — площадь канала воздушных проходов (измеряется в м²).

Чтобы вычислить расход воздуха, вышеуказанную формулу можно видоизменить, получив L = 3600 × F × ϑ.

Но существуют обстоятельства, когда провести такие расчеты трудно или попросту нет на это времени. В таких ситуациях на помощь приходит специальный калькулятор расчета скорости воздуха в воздуховоде.

В инженерных бюро чаще всего используют калькуляторы, которые наиболее точны. Например, они добавляют больше цифр в число Пи, точнее рассчитывают затрату воздуха, вычисляют толщину стен прохода и т.д.

Благодаря расчетам скорости в воздуховоде мы сможем точно произвести вычисления не только количества подачи воздуха, но и узнать динамическое давление на стенки каналов, затраты через трение, динамическое сопротивление и т.д.

При помощи данных калькуляторов, Вы сможете подобрать: вентилятор на вытяжной зонт пристенного типа; островного; потери даления в воздуховоде; кратность воздухообмена для помещений и.т. д.

По какой формуле происходит расчёт L (m³/ч) = S (m²) × V (m/c) × 3600

Для определения п роизводительности вентилятора (м³/ч), необходимо ввести значения в графы сторона А — В и скорость потока на срезе зонта

Формула для круглого вытяжного зонта L (m³/ч) = πR² × V (m/c) × 3600

Для определения п роизводительности вентилятора (м³/ч), необходимо ввести значения в графы диаметр и скорость потока на срезе зонта

Диаметр воздуховода для круглого сечения

Данный калькулятор позволяет расчитать необходимый диаметр воздуховода при известном значении требуемого воздухообмена м3

Формула по которой происходит расчёт

D = 2000*√(L/(3600*3,14*V))D — диаметр (мм)L — воздухообмен помещения (м³/ч)V — скорость воздуха (м/с)

Диаметр воздуховода для квадратного сечения

Формула по которой происходит расчёт

Данный калькулятор позволяет расчитать необходимый диаметр воздуховода при известном значении требуемого воздухообмена м3

Полезные материалы

Монтаж систем чиллер-фанкойл

Мы занимаемся установкой систем вентиляции и кондиционирования в Подольске с 2009 года, затем география наших услуг расширилась до городов Щербинка, Чехов, Серпухов, Домодедово.

Сейчас наши специалисты выезжают в города по всей Московской области. Квалификация подтверждается ежегодно, путём прохождения аттестации в климатических компаниях мировых лидеров.

Полученные знания и навыки позволяют нам найти и решить проблему любой сложности.

Наши цены Вас приятно удивят!

Монтаж кондиционера или вентиляционного оборудования можно заказать по телефонам в Подольске, Чехове, Щербинке и других городах Московской области

О Компании

Климатическая техника сегодня – уже не роскошь, а иногда, это даже потребность и необходимость. Чтобы Ваш дом был полон заботы и комфорта, кондиционер – одна из его немногих составляющих.

Адрес: МО, Г.о. Подольск,Железнодорожная 2б, офис1

ПОДГОТОВКА К ИСПЫТАНИЯМ

3.1. Перед испытаниями должна быть составлена программа испытаний с указанием цели, режимов работы оборудования и условий проведения испытаний.

3.2. Вентиляционные системы и их элементы должны быть про­верены и обнаруженные дефекты устранены.

3.3. Показывающие приборы (дифференциальные манометры, психрометры, барометры и др.), а также коммуникации к ним следует располагать таким образом, чтобы исключить воздейст­вие на них потоков воздуха, вибраций, конвективного и лучисто­го тепла, влияющих на показания приборов.

3.4. Подготовку приборов к испытаниям необходимо проводить в соответствии с паспортами приборов и действующими инструк­циями по их эксплуатации.

Оцените статью
uk-vodokanal.ru
Добавить комментарий