Точное определение понятия «точка росы» с универсальными расчетами по формулам и калькулятору

Содержание
  1. Некоторые сведения о том, как рассчитать толщину утеплителя
  2. Вариации поведения точки росы
  3. В неутепленных стенах
  4. В утепленных снаружи стенах
  5. В утепленных изнутри стенах
  6. В пластиковых окнах
  7. 2 Сферы применения понятия
  8. 2.1 Строительство
  9. 2.2 Сельское хозяйство
  10. Напоследок рекомендации для тех, кто строит из газобетона
  11. Теплонадзор » Расчет стен – теплозащита, утепление, температура и точка росы
  12. Расчет точки росы
  13. По математической формуле
  14. Программы-калькуляторы
  15. С помощью онлайн-калькулятора
  16. Специальные инструменты
  17. Таблицы
  18. Расчет точки росы
  19. По математической формуле
  20. Программы-калькуляторы
  21. С помощью онлайн-калькулятора
  22. Специальные инструменты
  23. Таблицы
  24. Причины образования влажности
  25. Обозначение точки росы
  26. Сферы применения понятия
  27. Строительство
  28. Сельское хозяйство
  29. Способы утепления изнутри
  30. Факторы, способствующие конденсации

Некоторые сведения о том, как рассчитать толщину утеплителя

Для того чтобы приступить к расчету термоизоляции, нам необходимо, прежде всего, высчитать Ro, затем узнать требуемое термическое сопротивление Rreq по следующей таблице (сокращенный вариант). Требуемые значения сопротивления теплопередаче ограждающих конструкций

Зданиепомещение Градусо-сутки отопительного периода D d , °С·сут Приведенное сопротивление теплопередаче ограждений R req , м2·°С/Вт
стены покрытия чердачного перекрытия и перекрытия над холодными подвалами окна и балконной двери, витрины и витража
1 2 3 4 5 6
1. Жилое, лечебно-профилактическое и детское учреждение, школа, интернат 2 000 2,1 3,2 2,8 0,30
4 000 2,8 4,2 3,7 0,45
6 000 3,5 5,2 4,6 0,60
8 000 4,2 6,2 5,5 0,70
10 000 4,9 7,2 6,4 0,75
12 000 5,6 8,2 7,3 0,80
а 0,00035 0,005 0,00045
b 1,4 2,2 1,9
2. Общественное, административное, бытовое и другие помещения с влажным или мокрым режимами 2 000 1,8 2,4 2,0 0,3
4 000 2,4 3,2 2,7 0,4
6 000 3,0 4,0 3,4 0,5
8 000 3,6 4,8 4,1 0,6
10 000 4,2 5,6 4,8 0,7
12 000 4,8 6,4 5,5 0,8
а 0,0003 0,0004 0,00035 0,00005
b 1,2 1,6 1,3 0,2

Коэффициенты a и b необходимы для тех случаев, когда значение D d , °С·сут отличается от приведенного в таблице, тогда R req , м2·°С/Вт рассчитывается по формуле R req = a D d + b. Для колонки 6 первой группы зданий существуют поправки: если значение градусо-суток менее 6000 °С·сут, a = 0,000075, а b = 0,15, если тот же показатель в диапазоне 6000-8000 °С·сут, то a = 0,00005, b = 0,3, если же более 8000 °С·сут, то a = 0,000025, а b = 0,5. Когда все данные будут собраны, приступаем к расчету термоизоляции.

Теперь выясним, как рассчитать толщину утеплителя. Здесь придется обратиться к математике, поэтому будьте готовы поработать с формулами. Вот первая из них, по ней определяем требуемое условное сопротивление теплопередаче Roусл. тр = R req/r. Данный параметр нам нужен для определения требуемого сопротивления теплопередачи утеплителя Rуттр = Roусл. тр – (Rв + ΣRт. изв + Rн), здесь ΣRт. изв является суммой термического сопротивления слоев ограждения без учета теплоизоляции. Находим толщину утеплителя δут = Rуттр λут (м), причем λут берется из таблицы Д.1 СП 23-101-2004 , и округляем полученный результат в большую сторону до конструктивного значения с учетом номенклатуры производителя.

На фото – теплопоступления и теплопотери в помещении общественного здания, xiron.ru

Фото таблицы определения поправочного коэффициента для расчета теплопотерь, radiatorprado.ru

На фото – таблица теплопотерь при морозе в утепленном и неутепленном жилье, idea5.narod.ru

Фото основной причины высоких теплопотерь, intekosib.ru

На фото – поправочный коэффициент к расчетной разности температур, 56kss.ru

Вариации поведения точки росы

Положение плоскости с температурой насыщения зависит от наличия и способа применения утеплителя. Необходимо рассмотреть несколько случаев.

В неутепленных стенах

В этом варианте критическая точка всегда находится внутри конструкции.

Положение зависит от ее толщины и перепада между наружной и внутренней температурами:

  1. Ближе к наружной поверхности. В этом случае стена со стороны помещения всегда сухая. Но наружный слой может постепенно разрушаться по причине замерзания воды. Это зависит от того, какое ее количество достигает участка с температурой превращения пара в росу.
  2. Ближе к внутренней поверхности. При экстремальных похолоданиях стена внутри становится мокрой.
  3. На поверхности со стороны помещения. Внутренняя поверхность конструкции не высыхает всю зиму. На мокрой стене развиваются колонии плесени, отравляющие воздух своими спорами.

В неутепленных стенах точка росы находится внутри конструкции.

Сказанное не относится к каркасному дому, стены которого состоят из утеплителя и паронепроницаемой обшивки.

В утепленных снаружи стенах

В этом варианте критическая точка смещается в сторону улицы.

Она может располагаться:

  1. В утеплителе. Это наилучший вариант. Влага в стене не конденсируется, поэтому конструкция служит весь положенный срок. Условием выноса точки конденсации пара за пределы основного материала является большая толщина теплоизолятора.
  2. В стене. Данное положение наблюдается при недостаточной толщине утеплителя. Зона образования влаги может занимать любое положение (вплоть до внутренней поверхности).

Утеплитель должен превосходить основной материал стены по коэффициенту паропроницаемости. В противном случае влага будет накапливаться на границе между ними. Таким образом, нельзя утеплять пенопластом, коэффициент паропроницаемости которого составляет 0,05 мг/м*ч*Па, стены из кирпича (0,17) и газобетона (0,11-0,23).

В утепленных снаружи стенах критическая точка смещается в сторону улицы.

В утепленных изнутри стенах

Критическая точка смещается в сторону помещения. Возможные варианты:

  1. В стене ближе к внутренней поверхности. Большую часть времени конструкция остается сухой, но в экстремальные холода намокает.
  2. На внутренней поверхности основного материала. Влага не высыхает всю зиму.
  3. В утеплителе. Конструкция всю зиму остается мокрой. В экстремальные холода намокает и теплоизолятор.

К внутреннему утеплению прибегают только в крайнем случае. Например, если наружной стороной стена выходит в шахту лифта. В других ситуациях теплоизолятор размещают извне, иначе срок службы конструкции сильно сокращается.

В утепленных изнутри стенах точка смещается в сторону помещения.

В пластиковых окнах

Металлопластиковые окна представляют собой паронепроницаемые изделия.

Поэтому имеются только 2 варианта температуры поверхности со стороны помещения:

  1. Выше критической величины.
  2. Ниже этого параметра.

Во втором случае окна «потеют».

2 Сферы применения понятия

Переход влаги в жидкое агрегатное состояние существенно меняет условия жизни и трудовой деятельности людей, отражается на работе конструкций и механизмов

Поэтому во многих сферах точке выпадения пара в осадок уделяют особое внимание

2.1 Строительство

Ограждающие конструкции большинства зданий обладают паропроницаемостью. Исключением являются только металлические ангары и гаражи. Относительная влажность в помещении выше, чем снаружи, и пар под действием парциального давления проникает в стены.

Здания обладают паропроницаемостью, которая зависит от типа строительного материала. 

В случае наличия в их толще участков с температурой насыщения или ниже он конденсируется, что приводит к таким последствиям:

  1. Снижению термического сопротивления конструкции.
  2. Сокращению срока службы строительного материала. При похолодании вода превращается в лед и расширяется, вызывая внутренние разрушения.
  3. Развитию колоний плесени и грибка (при увлажнении поверхности).

Строительные материалы имеют разную паропроницаемость. Наименьший показатель у тяжелого железобетона (панельные дома) — 0,03 мг/м*ч*Па, наибольший — у газобетонных блоков — 0,23 (при плотности 400 кг/куб. м).

2.2 Сельское хозяйство

При снижении температуры воздуха влага конденсируется на побегах и листьях растений. При частых повторениях это провоцирует заболевания. Таким образом, знание точки конденсации водяного пара позволяет планировать профилактические и лечебные мероприятия.

Влага конденсируется на листьях растений.

В засушливых регионах, наоборот, конденсация атмосферной влаги может частично заменить систему орошения. Селекционеры работают над выведением сортов, способных усваивать воду таким образом. Тогда знание критической точки поможет определить необходимую производительность поливальных установок, если прогноз погоды в ближайшее время не предвещает дождей.

Меры защиты некоторых растений, например винограда, тоже планируют с учетом данного параметра. Если он высокий, значит, воздух содержит много влаги, и повреждения от заморозков, в т.ч. радиационных, будут умеренными.

Напоследок рекомендации для тех, кто строит из газобетона

Планируя возводить стены из газоблока, нужно помнить о некоторых особенностях как материала, так и технологии. Наиболее предпочтительным вариантом для строительства становятся блоки марок D400/D500 с толщиной стен в 30-40 сантиметров. Для сезонного проживания выбирают толщину стен в 30 сантиметров, для постоянного – лучше 40.

Лучше не класть газобетонные блоки на цементный раствор, который способствует образованию мостиков холода.

Желательно использовать специальный клей, который наносится тонким слоем и позволяет исключить теплопотери

Очень важно контролировать качество швов (особенно это касается вертикальных), чтобы не было пропусков

Утеплять лучше минеральной ватой, как было указано выше. Толщину утеплителя просчитывают в соответствии с техническими характеристиками блока, планируемой толщиной стен, климатическими условиями, свойствами самого теплоизолятора.

Желательно, чтобы утеплитель хорошо пропускал пар и не вызывал скопления влаги внутри структуры строительного материала.

Для газобетонных стен не подходят такие виды утеплителя: пенополиуретан, пенопласт, пергамин, пеноизол, эковата. Лучший выбор – минеральная вата, которая поставляется в формате рулонов либо плит, крепится на стены клеем или специальными крепежами. Паропроницаемость минеральной ваты выше в 5-10 раз в сравнении с синтетическими теплоизоляционными материалами.

Теплонадзор » Расчет стен – теплозащита, утепление, температура и точка росы

Эта публикация не совсем про тепловидение в строительстве, скорее, совсем не про тепловидение. Сегодня я хочу рассказать о расчете теплового и влажностного режима наружных ограждающих конструкций. Задача такая часто возникает при тепловизионном обследовании зданий, оценке проектного уровня теплозащиты, разработке мероприятий по утеплению конструкций.

Тепловизор показывает нам только температуры поверхностей. Что происходит внутри, как распределяется температура по толщине конструкции неразрушающим методом не определить. Кроме температуры важным показателем является положение плоскости возможной конденсации влаги в конструкции, иными словами, положение точки росы. Будет конструкция сухой или с конденсатом зависит от положения точки росы. Это зависит от множества факторов, среди которых толщина и материалы всех слоев, температура и влажность в помещении, температура и влажность снаружи.

В своде правил СП 23-101-2004 «Проектирование тепловой защиты зданий» глава 9 «Методика проектирования тепловой защиты зданий» посвящена тепловому расчету и определению проектного значения сопротивления теплопередаче конструкции, глава 13 «Расчет сопротивления паропроницанию ограждающих конструкций» посвящена влажностному расчету. Исходные данные для расчета приведены в приложении Д «Расчетные теплотехнические показатели строительных материалов и изделий». Данные для расчета также можно взять из актуализированной версии СП 50.13330.2012

Внимание! Во многих программах использованы климатические данные СНиП 23-01-99, который заменен на СП 131.13330.2012

СП 23-101-2004 СП 50.13330.2012

Существует ряд программ, которые позволяют автоматизировать расчет теплового и влажностного режимов ограждающих конструкций. Ниже я даю ссылки на бесплатные инструменты расчета.

ТЕПЛОРАСЧЕТ ссылка: http://теплорасчет.рф, или немецкий: http://www.u-wert.net

ATLAS SALTA ссылка: http://www.atlasrus.spb.ru

Теплотехнический калькулятор ссылка: http://www.smartcalc.ru/thermocalc

Огромная просьба, пожелания и вопросы о работе программ отправлять на сайты указанных программ. Там есть поддержка, форум, вам ответят

Внимание! Teplonadzor.ru никакого отношения к программам не имеет, ответственности за использование программ и их результатов не несет

Расчет точки росы

Существует несколько способов определения параметра.

По математической формуле

Применяют следующее выражение:

Tp=b((aT/b+T)+InRH)/a-((aT/b+T)+InRH), где

Тр — точка росы, °С;

Расчет точки росы происходит по математическим формулам.

A и b — безразмерные коэффициенты, равные 17,27 и 237,7 соответственно;

RH — относительная влажность воздуха в долях единицы;

Т — температура воздуха, °С;

Ln — натуральный логарифм.

Приведенная формула справедлива для значений Т=0…+60°С и атмосферного давления 762 мм. рт. ст.

Программы-калькуляторы

Специализированные приложения производят вычисления автоматически. Пользователю необходимо ввести исходные данные и нажать кнопку «Старт». Кроме числового результата, программы отображают графики зависимости влажности от степени нагретости воздуха. Такая форма представления информации является более наглядной.

С помощью онлайн-калькулятора

Вычислительные сервисы имеются на многих сайтах. Они избавляют пользователя от необходимости покупать и скачивать программу.

Онлайн-калькулятор есть на многих сайтах.

В специальные поля вводят данные:

  • температуру воздуха;
  • относительную влажность;
  • атмосферное давление.

После нажатия кнопки «Вычислить» на экране отображается искомая величина.

Недостаток данного способа состоит в том, что изготовитель калькулятора в большинстве случаев неизвестен, поэтому результат может быть недостоверным.

Специальные инструменты

Существуют тепловизоры с функцией расчета точки росы. Объекты с такой и более низкой температурой помечаются на экране особым образом.

Гигрометр — измерительный прибор, предназначенный для определения влажности воздуха.

Влажность измеряют с помощью приборов:

  1. Гигрометра. Электронное устройство удобно в пользовании, но вычисления производит с большой погрешностью.
  2. Психрометра. Он состоит из 2 спиртовых термометров. Колбу одного обматывают влажной салфеткой. За счет испарения воды показания на нем будут ниже, чем на «сухом». Чем ниже влажность в помещении, тем активнее улетучивается жидкость. Значит, и разница в показаниях будет больше. Результат отыскивают в справочнике вручную. Определенная с помощью психрометра искомая точка является наиболее точной.

Таблицы

В интернете и специальной литературе публикуются таблицы со значениями точки образования росы для воздуха с разными параметрами.

Пример:

Температуравоздуха, °С Температура насыщения в °С при влажности воздуха (в %)
30% 35% 40% 45% 50% 55% 60% 65% 70% 75% 80% 85% 90% 95%
-10 -23,2 -21,8 -20,4 -19 -17,8 -16,7 -15,8 -14,9 -14,1 -13,3 -12,6 -11,9 -10,6 -10
-5 -18,9 -17,2 -15,8 -14,5 -13,3 -11,9 -10,9 -10,2 -9,3 -8,8 -8,1 -7,7 -6,5 -5,8
-14,5 -12,8 -11,3 -9,9 -8,7 -7,5 -6,2 -5,3 -4,4 -3,5 -2,8 -2 -1,3 -0,7
+2 -12,8 -11 -9,5 -8,1 -6,8 -5,8 -4,7 -3,6 -2,6 -1,7 -1 -0,2 -0,6 1,3
+4 -11,3 -9,5 -7,9 -6,5 -4,9 -4 -3 -1,9 -1 0,8 1,6 2,4 3,2
+5 -10,5 -8,7 -7,3 -5,7 -4,3 -3,3 -2,2 -1,1 -0,1 0,7 1,6 2,5 3,3 4,1
+6 -9,5 -7,7 -6 -4,5 -3,3 -2,3 -1,1 -0,1 0,8 1,8 2,7 3,6 4,5 5,3
+7 -9 -7,2 -5,5 -4 -2,8 -1,5 -0,5 0,7 1,6 2,5 3,4 4,3 5,2 6,1
+8 -8,2 -6,3 -4,7 -3,3 -2,1 -0,9 0,3 1,3 2,3 3,4 4,5 5,4 6,2 7,1
+9 -7,5 -5,5 -3,9 -2,5 -1,2 1,2 2,4 3,4 4,5 5,5 6,4 7,3 8,2
+10 -6,7 -5,2 -3,2 -1,7 -0,3 0,8 2,2 3,2 4,4 5,5 6,4 7,3 8,2 9,1
+11 -6 -4 -2,4 -0,9 0,5 1,8 3 4,2 5,3 6,3 7,4 8,3 9,2 10,1
+12 -4,9 -3,3 -1,6 -0,1 1,6 2,8 4,1 5,2 6,3 7,5 8,6 9,5 10,4 11,7
+13 -4,3 -2,5 -0,7 0,7 2,2 3,6 5,2 6,4 7,5 8,4 9,5 10,5 11,5 12,3
+14 -3,7 -1,7 1,5 3 4,5 5,8 7 8,2 9,3 10,3 11,2 12,1 13,1
+15 -2,9 -1 0,8 2,4 4 5,5 6,7 8 9,2 10,2 11,2 12,2 13,1 14,1
+16 -2,1 -0,1 1,5 3,2 5 6,3 7,6 9 10,2 11,3 12,2 13,2 14,2 15,1
+17 -1,3 0,6 2,5 4,3 5,9 7,2 8,8 10 11,2 12,2 13,5 14,3 15,2 16,6
+18 -0,5 1,5 3,2 5,3 6,8 8,2 9,6 11 12,2 13,2 14,2 15,3 16,2 17,1
+19 0,3 2,2 4,2 6 7,7 9,2 10,5 11,7 13 14,2 15,2 16,3 17,2 18,1
+20 1 3,1 5,2 7 8,7 10,2 11,5 12,8 14 15,2 16,2 17,2 18,1 19,1
+21 1,8 4 6 7,9 9,5 11,1 12,4 13,5 15 16,2 17,2 18,1 19,1 20
+22 2,5 5 6,9 8,8 10,5 11,9 13,5 14,8 16 17 18 19 20 21
+23 3,5 5,7 7,8 9,8 11,5 12,9 14,3 15,7 16,9 18,1 19,1 20 21 22
+24 4,3 6,7 8,8 10,8 12,3 13,8 15,3 16,5 17,8 19 20,1 21,1 22 23
+25 5,2 7,5 9,7 11,5 13,1 14,7 16,2 17,5 18,8 20 21,1 22,1 23 24
+26 6 8,5 10,6 12,4 14,2 15,8 17,2 18,5 19,8 21 22,2 23,1 24,1 25,1
+27 6,9 9,5 11,4 13,3 15,2 16,5 18,1 19,5 20,7 21,9 23,1 24,1 25 26,1
+28 7,7 10,2 12,2 14,2 16 17,5 19 20,5 21,7 22,8 24 25,1 26,1 27
+29 8,7 11,1 13,1 15,1 16,8 18,5 19,9 21,3 22,5 22,8 25 26 27 28
+30 9,5 11,8 13,9 16 17,7 19,7 21,3 22,5 23,8 25 26,1 27,1 28,1 29
+32 11,2 13,8 16 17,9 19,7 21,4 22,8 24,3 25,6 26,7 28 29,2 30,2 31,1
+34 12,5 15,2 17,2 19,2 21,4 22,8 24,2 25,7 27 28,3 29,4 31,1 31,9 33
+36 14,6 17,1 19,4 21,5 23,2 25 26,3 28 29,3 30,7 31,8 32,8 34 35,1
+38 16,3 18,8 21,3 23,4 25,1 26,7 28,3 29,9 31,2 32,3 33,5 34,6 35,7 36,9
+40 17,9 20,6 22,6 25 26,9 28,7 30,3 31,7 33 34,3 35,6 36,8 38 39

Расчет точки росы

Существует несколько способов определения параметра.

По математической формуле

Применяют следующее выражение:

Tp=b((aT/b+T)+InRH)/a-((aT/b+T)+InRH), где

Тр — точка росы, °С;

Расчет точки росы происходит по математическим формулам.

A и b — безразмерные коэффициенты, равные 17,27 и 237,7 соответственно;

RH — относительная влажность воздуха в долях единицы;

Т — температура воздуха, °С;

Ln — натуральный логарифм.

Приведенная формула справедлива для значений Т=0…+60°С и атмосферного давления 762 мм. рт. ст.

Программы-калькуляторы

Специализированные приложения производят вычисления автоматически. Пользователю необходимо ввести исходные данные и нажать кнопку «Старт». Кроме числового результата, программы отображают графики зависимости влажности от степени нагретости воздуха. Такая форма представления информации является более наглядной.

С помощью онлайн-калькулятора

Вычислительные сервисы имеются на многих сайтах. Они избавляют пользователя от необходимости покупать и скачивать программу.

Онлайн-калькулятор есть на многих сайтах.

В специальные поля вводят данные:

  • температуру воздуха;
  • относительную влажность;
  • атмосферное давление.

После нажатия кнопки «Вычислить» на экране отображается искомая величина.

Недостаток данного способа состоит в том, что изготовитель калькулятора в большинстве случаев неизвестен, поэтому результат может быть недостоверным.

Специальные инструменты

Существуют тепловизоры с функцией расчета точки росы. Объекты с такой и более низкой температурой помечаются на экране особым образом.

Гигрометр — измерительный прибор, предназначенный для определения влажности воздуха.

Влажность измеряют с помощью приборов:

  1. Гигрометра. Электронное устройство удобно в пользовании, но вычисления производит с большой погрешностью.
  2. Психрометра. Он состоит из 2 спиртовых термометров. Колбу одного обматывают влажной салфеткой. За счет испарения воды показания на нем будут ниже, чем на «сухом». Чем ниже влажность в помещении, тем активнее улетучивается жидкость. Значит, и разница в показаниях будет больше. Результат отыскивают в справочнике вручную. Определенная с помощью психрометра искомая точка является наиболее точной.

Таблицы

В интернете и специальной литературе публикуются таблицы со значениями точки образования росы для воздуха с разными параметрами.

Пример:

Температура воздуха, °С Температура насыщения в °С при влажности воздуха (в %)
30% 35% 40% 45% 50% 55% 60% 65% 70% 75% 80% 85% 90% 95%
-10 -23,2 -21,8 -20,4 -19 -17,8 -16,7 -15,8 -14,9 -14,1 -13,3 -12,6 -11,9 -10,6 -10
-5 -18,9 -17,2 -15,8 -14,5 -13,3 -11,9 -10,9 -10,2 -9,3 -8,8 -8,1 -7,7 -6,5 -5,8
-14,5 -12,8 -11,3 -9,9 -8,7 -7,5 -6,2 -5,3 -4,4 -3,5 -2,8 -2 -1,3 -0,7
+2 -12,8 -11 -9,5 -8,1 -6,8 -5,8 -4,7 -3,6 -2,6 -1,7 -1 -0,2 -0,6 1,3
+4 -11,3 -9,5 -7,9 -6,5 -4,9 -4 -3 -1,9 -1 0,8 1,6 2,4 3,2
+5 -10,5 -8,7 -7,3 -5,7 -4,3 -3,3 -2,2 -1,1 -0,1 0,7 1,6 2,5 3,3 4,1
+6 -9,5 -7,7 -6 -4,5 -3,3 -2,3 -1,1 -0,1 0,8 1,8 2,7 3,6 4,5 5,3
+7 -9 -7,2 -5,5 -4 -2,8 -1,5 -0,5 0,7 1,6 2,5 3,4 4,3 5,2 6,1
+8 -8,2 -6,3 -4,7 -3,3 -2,1 -0,9 0,3 1,3 2,3 3,4 4,5 5,4 6,2 7,1
+9 -7,5 -5,5 -3,9 -2,5 -1,2 1,2 2,4 3,4 4,5 5,5 6,4 7,3 8,2
+10 -6,7 -5,2 -3,2 -1,7 -0,3 0,8 2,2 3,2 4,4 5,5 6,4 7,3 8,2 9,1
+11 -6 -4 -2,4 -0,9 0,5 1,8 3 4,2 5,3 6,3 7,4 8,3 9,2 10,1
+12 -4,9 -3,3 -1,6 -0,1 1,6 2,8 4,1 5,2 6,3 7,5 8,6 9,5 10,4 11,7
+13 -4,3 -2,5 -0,7 0,7 2,2 3,6 5,2 6,4 7,5 8,4 9,5 10,5 11,5 12,3
+14 -3,7 -1,7 1,5 3 4,5 5,8 7 8,2 9,3 10,3 11,2 12,1 13,1
+15 -2,9 -1 0,8 2,4 4 5,5 6,7 8 9,2 10,2 11,2 12,2 13,1 14,1
+16 -2,1 -0,1 1,5 3,2 5 6,3 7,6 9 10,2 11,3 12,2 13,2 14,2 15,1
+17 -1,3 0,6 2,5 4,3 5,9 7,2 8,8 10 11,2 12,2 13,5 14,3 15,2 16,6
+18 -0,5 1,5 3,2 5,3 6,8 8,2 9,6 11 12,2 13,2 14,2 15,3 16,2 17,1
+19 0,3 2,2 4,2 6 7,7 9,2 10,5 11,7 13 14,2 15,2 16,3 17,2 18,1
+20 1 3,1 5,2 7 8,7 10,2 11,5 12,8 14 15,2 16,2 17,2 18,1 19,1
+21 1,8 4 6 7,9 9,5 11,1 12,4 13,5 15 16,2 17,2 18,1 19,1 20
+22 2,5 5 6,9 8,8 10,5 11,9 13,5 14,8 16 17 18 19 20 21
+23 3,5 5,7 7,8 9,8 11,5 12,9 14,3 15,7 16,9 18,1 19,1 20 21 22
+24 4,3 6,7 8,8 10,8 12,3 13,8 15,3 16,5 17,8 19 20,1 21,1 22 23
+25 5,2 7,5 9,7 11,5 13,1 14,7 16,2 17,5 18,8 20 21,1 22,1 23 24
+26 6 8,5 10,6 12,4 14,2 15,8 17,2 18,5 19,8 21 22,2 23,1 24,1 25,1
+27 6,9 9,5 11,4 13,3 15,2 16,5 18,1 19,5 20,7 21,9 23,1 24,1 25 26,1
+28 7,7 10,2 12,2 14,2 16 17,5 19 20,5 21,7 22,8 24 25,1 26,1 27
+29 8,7 11,1 13,1 15,1 16,8 18,5 19,9 21,3 22,5 22,8 25 26 27 28
+30 9,5 11,8 13,9 16 17,7 19,7 21,3 22,5 23,8 25 26,1 27,1 28,1 29
+32 11,2 13,8 16 17,9 19,7 21,4 22,8 24,3 25,6 26,7 28 29,2 30,2 31,1
+34 12,5 15,2 17,2 19,2 21,4 22,8 24,2 25,7 27 28,3 29,4 31,1 31,9 33
+36 14,6 17,1 19,4 21,5 23,2 25 26,3 28 29,3 30,7 31,8 32,8 34 35,1
+38 16,3 18,8 21,3 23,4 25,1 26,7 28,3 29,9 31,2 32,3 33,5 34,6 35,7 36,9
+40 17,9 20,6 22,6 25 26,9 28,7 30,3 31,7 33 34,3 35,6 36,8 38 39

Причины образования влажности

Калькуляторы расчета площади сечения вытяжной отдушины вентиляции

Определение точки росы – кропотливый процесс, но изменить ее расположение еще сложнее. Хорошими способами удаления избытка влаги являются:

  • организация естественной вентиляции;
  • регулярное проветривание;
  • забота о целостности крыши.

Причиной появления влажности может стать жизнедеятельность человека:

  • приготовление пищи;
  • стирка;
  • пользование душем.

При возникновении даже минимального риска образования влажности необходимо регулярно осматривать помещение, проводить профилактические мероприятия, позаботиться о герметичности оконных и дверных проемов, а также гидроизоляции крыши и подвалов.

Обозначение точки росы

Сейчас нет смысла задумываться над тем, как высчитать точку росы, потому как это давно уже сделано профессионалами, а результаты сведены в таблицу. В ней указываются значения температур поверхностей, ниже которых из воздуха с разной влажностью начинает выделяться конденсат.

Как можно заметить, фиолетовым цветом тут выделена нормативная температура в помещении в зимнее время года – 20 °С, а зеленым отмечен раздел, что охватывает диапазон нормированной влаги – от 50 до 60%. При этом точка росы меняется от 9.3 до 12 °С. Другими словами, при воплощении всех норм конденсация влаги изнутри дома не представляется возможной, потому как в нем нет поверхностей с подобной температурой.

Иное дело – внешняя стена. Внутри ее омывает воздух, нагретый до +20 °С, а с наружной стороны – минус 20 °С, а иногда даже больше. Значит, в толще стены температура поэтапно растет от минус 20 °С до + 20 °С и в каком-нибудь месте она в первую очередь будет равна 12 °С, что при влаги 60% даст точку росы. Однако для этого еще необходимо, чтобы пар перегретый добрался до данного места сквозь материал ограждения

И здесь появляется еще 1 фактор, действующий на обозначение точки росы – проходимость пара материала, которая всегда принимается во внимание во время строительства

Сейчас можно перечислить все факторы, которые влияют на образование влаги изнутри фасадных стен во время эксплуатации:

  • температура окружающей среды;
  • относительная влажность воздуха;
  • температура в толще стены;
  • проходимость пара материала ограждения.

Примечание. Чтобы провести измерения данных показателей в толще используемых стен не существует никаких датчиков или анализаторов, их можно получить только расчетным путем.

Проходимость пара – это характеристика, показывающая, какое кол-во пара перегретого может пропустить через себя тот или другой материал за конкретный временной промежуток. К проницаемым относятся все конструктивные материалы с открытыми порами – бетон, кирпич, дерево и так дальше. В народе бытует выражение, что дома, построенные из них, «дышат». Примерами пористого теплоизолятора служат минвата и керамзитобетон.

Из всего сказанного выше делаем вывод, что в традиционных и теплоизолированных стенах обязательно есть условия для появления точки росы. Вот здесь и рождается много небылиц и страшилок, которые связаны с большим количеством воды, прямо-таки вытекающим из стен при конденсации, и произрастающей на них массой плесени. В реальности все не очень страшно, ведь эта точка не занимает стационарную позицию в ограждении. Со временем условия с двух сторон конструкции регулярно меняются, отчего и точка росы в стене передвигается. В строительстве это называют зоной потенциальной конденсации.

Так как заграждение проницаемо, то оно может самостоятельно избавиться от выделяющейся влаги, при этом значимую роль играет система вентиляции с двух сторон. Недаром внешнее утепление стен ватой на минеральной основе выполняется вентилируемым, ведь точка росы в данном случае находится в теплоизоляторе. Если все сделано правильно, то выделяющаяся изнутри ваты влага через поры покидает ее и уносится потоком вентиляционного воздуха.

Вот почему очень важно устроить правильную систему вентиляции в помещениях для жилья, она убирает не только вещества которые вредны, но и дополнительную влажность. Стенка мокнет лишь в одном случае: когда конденсация происходит регулярно и на протяжении продолжительного времени, а влаге деться некуда

В нормальных условиях материал просто не успевает напитаться водой.

Современные полимерные теплоизоляторы почти не пропускают пар, благодаря этому при стеновом утеплении их лучше располагать с наружной стороны. Тогда которая нужна для конденсации температура будет изнутри пенополистирола или вспененного полистирола, но пары к этому месту не доберутся, а поэтому и увлажнения не появится. И наоборот, теплоизолировать полимерным материалом внутри не стоит, так как точка росы остается в стене, а влага станет выделяться на стыке 2-ух материалов.

Пример подобной конденсации – окно с одним стеклом в зимнее время, оно не пропускает пары, отчего на поверхности внутри образуется вода.

Утепление внутри выполнимо при подобных условиях:

  • стенка достаточно сухая и относительно тёплая;
  • теплоизолятор обязан быть паропроницаемым, дабы выделяющаяся влага могла покинуть конструкцию;
  • в доме должна отлично действовать система вентиляции.

Сферы применения понятия

Переход влаги в жидкое агрегатное состояние существенно меняет условия жизни и трудовой деятельности людей, отражается на работе конструкций и механизмов

Поэтому во многих сферах точке выпадения пара в осадок уделяют особое внимание

Строительство

Ограждающие конструкции большинства зданий обладают паропроницаемостью. Исключением являются только металлические ангары и гаражи. Относительная влажность в помещении выше, чем снаружи, и пар под действием парциального давления проникает в стены.

Здания обладают паропроницаемостью, которая зависит от типа строительного материала. 

В случае наличия в их толще участков с температурой насыщения или ниже он конденсируется, что приводит к таким последствиям:

  1. Снижению термического сопротивления конструкции.
  2. Сокращению срока службы строительного материала. При похолодании вода превращается в лед и расширяется, вызывая внутренние разрушения.
  3. Развитию колоний плесени и грибка (при увлажнении поверхности).

Строительные материалы имеют разную паропроницаемость. Наименьший показатель у тяжелого железобетона (панельные дома) — 0,03 мг/м*ч*Па, наибольший — у газобетонных блоков — 0,23 (при плотности 400 кг/куб. м).

Сельское хозяйство

При снижении температуры воздуха влага конденсируется на побегах и листьях растений. При частых повторениях это провоцирует заболевания. Таким образом, знание точки конденсации водяного пара позволяет планировать профилактические и лечебные мероприятия.

Влага конденсируется на листьях растений.

В засушливых регионах, наоборот, конденсация атмосферной влаги может частично заменить систему орошения. Селекционеры работают над выведением сортов, способных усваивать воду таким образом. Тогда знание критической точки поможет определить необходимую производительность поливальных установок, если прогноз погоды в ближайшее время не предвещает дождей.

Меры защиты некоторых растений, например винограда, тоже планируют с учетом данного параметра. Если он высокий, значит, воздух содержит много влаги, и повреждения от заморозков, в т.ч. радиационных, будут умеренными.

Способы утепления изнутри

Выбирая материал для утепления, необходимо учитывать следующие характеристики:

  • влагостойкость;
  • экологическая безопасность;
  • пожаробезопасность.

Толщина теплоизоляционного слоя должна быть достаточной для того, чтобы удержать точку росы в утеплителе. Теплорасчет точки росы в РФ осуществляется в соответствии с установленными требованиями.

Поэтапность действий при клеевом способе утепления:

  1. Начинать нужно с удаления старого слоя отделки.
  2. Затем необходимо выровнять поверхность стены.
  3. Следующим этапом является грунтовка. Она необходима для лучшего сцепления стены и отделочного материала.
  4. Повторное выравнивание стены. Оштукатуривание.
  5. Приклеивание теплоизоляционного материала. Для этого понадобится клей, применяемый для работы с керамической плиткой. Сначала наносится по периметру плиты, а затем по центру. Весь слой равномерно распределяется при помощи зубчатого шпателя. Лист прикладывается к стене, а излишки клея удаляются. Начинать оклеивание нужно с угла снизу вверх.
  6. Сушка. После окончания процесса приклеивания стене нужно дать высохнуть в течение трех суток.
  7. Закрепление утеплителя. Когда все готово, необходимо закрепить материал при помощи дюбелей.

Советы по регулированию точки росы при установке металлопластиковых окон

На формирование точки влияет три основных фактора:

  • атмосферное давление;
  • температура;
  • влажность.

Чем прохладнее в помещении, тем меньше влаги понадобится для ее перехода в жидкое состояние.

Чтобы избежать образования конденсата на окнах, в самом помещении должно быть тепло и сравнительно сухо. При этом само окно должно устанавливаться в так называемой «теплой зоне».

Для обеспечения комфортных условий следует учесть советы профессионалов:

При плохой работе вентиляции повышается влажность воздуха

Поэтому необходимо своевременно прочищать каналы воздуховодов и проветривать помещение. Для предотвращения попадания холодного воздуха внутрь помещения рекомендуется утеплить стены и откосы

На первых и последних этажах важно позаботиться о теплоизоляции потолков и пола. Эти меры помогут устранить повышенную влажность

Дешевые некачественные варианты окон могут доставить дополнительные проблемы из-за особенностей профиля.

Предупредительные меры помогут и сэкономить, и обеспечить полный комфорт.

Факторы, способствующие конденсации

Задумываясь о том, нужно ли утеплять дом из газобетона, сначала стоит изучить теорию. Газобетон сам по себе хорошо сохраняет тепло за счет наличия в структуре материала воздушных пор. Но прокладка теплоизоляционного слоя нужна не только для утепления и экономии в будущем на отоплении, но и для защиты от появления влаги, которая способна быстро разрушить всю конструкцию.

Ведь газоблок гигроскопичен, он сильно впитывает воду, которая потом при замерзании приводит к появлению деформаций, распространению трещин. Избежать этого удается только благодаря изоляционным и отделочным материалам, способным обеспечить надежную защиту блоков от влаги.


Основные причины появления конденсата:

  • Высокая влажность внутри помещения при условии пониженной температуры на улице. Так, влага может появляться в процессе строительства, но она испаряется на протяжении года благодаря вентиляции и паропроницаемости отделочных материалов (чтобы влага не «запиралась» внутри стен).
  • Недостаточное сопротивление теплопередаче стен – при ошибках выбора материала либо его толщины (даже если в помещении тепло благодаря отоплению).
  • Появление «мостиков холода» — зон с низкой теплоизолирующей способностью из-за наличия металлических анкеров, укладки блоков на цементный раствор.
  • В случае нарушения технологии строительства – при наличии щелей в утеплителе, из-за некачественного заполнения клеем стыков вертикальных и т.д.
  • При запирании внутри влаги.

Последний случай самый сложный и наблюдается, когда материал с высоким показателем паропроницаемости облицовывается с внешней стороны материалом с низким уровнем паропроницаемости.

В таком случае водяной пар не может уходить наружу и впитывается в стену, понижая теплоизоляционные свойства и провоцируя промерзание конструкции в будущем.

Выполняя теплоизоляцию и облицовку, нужно помнить о таком правиле: чем ближе к внешней стороне, тем выше должна быть паропроницаемость (в связи с чем лучший вариант утеплителя для газобетона – минеральная вата, паропроницаемые краски и штукатурки). В противном случае проявляется эффект парника.

Оцените статью
uk-vodokanal.ru
Добавить комментарий