Сервопривод

Содержание

Преимущества прямых приводов

Развитие промышленного машино­строения и роботехники не стоит на месте, поэтому с каждым днем требования к точности и производительности устройств возрастают. Мы все чаще сталкиваемся с задачами, где точность измеряется уже в угловых секундах. С этим современные сервоприводы справляются. Но также необходимо помнить об особенностях передаточных механизмов, таких как редуктор, ремень/шкив или кулачковый механизм. Любой, даже самый прецизионный редуктор имеет люфт, у ременчатой передачи и кулачковых механизмов тоже есть погрешности, не говоря о том, что они увеличивают размеры привода, что в некоторых применениях особенно критично. В связи с этим стоит задуматься о более высокоточной технологии передачи движения — технологии прямого (безредукторного) привода (рис. 3), которую мы рассмотрим на примере продукции Kollmorgen.

Само понятие «прямой привод» означает, что исполнительный орган непосредственно подключен к приводящему его в движение электродвигателю, т. е. не имеет передаточных элементов. Это относится как к вращательному, так и к линейному передвижению. Точность прямого привода можно оценить на следующем примере. Серводвигатель с прецизионным редуктором имеет люфт в одну угловую минуту: это означает, что при полностью неподвижном приводе может произойти смещение исполнительного органа на такую величину. В то же время повторяемость серводвигателя со сквозным валом Kollmorgen DDR составляет более одной угловой секунды. Таким образом, получается, что у серводвигателей с прямым приводом точность позиционирования в 60 раз выше, чем у мотора-редуктора.

Используя прямой привод, можно улучшить качество изготавливаемой продукции за счет следующих особенностей:

  • более точная печать;
  • раскрой и длина протяжки становятся точнее;
  • более точная координация с другими осями машины;
  • высокая точность при позиционировании;
  • исключаются проблемы при настройке компенсации люфта.

Прямым приводам Kollmorgen свойственны и другие преимущества. Например, компоненты механической передачи накладывают ограничения на то, как быстро мы можем произвести запуск и останов исполнительного механизма. Из-за этих факторов понижается возможная пропускная способность машины, что напрямую влияет на ее производительность.

Прямой привод устраняет эти ограничения, позволяет значительно ускорить цикл «запуск/останов» и уменьшить время простоев. При этом пропускная способность оборудования может повыситься в два раза.

Следующим преимуществом является повышение надежности машины из-за исключения дополнительных элементов и механических передач. При использовании прямого привода не нужно периодически обслуживать ремни и шкивы, заниматься их протягиванием, менять смазочные материалы в редукторе. Необходимы только серводвигатель со сквозным валом и крепежные болты. Таким образом, исключаются многие детали, такие как: кронштейны, ограждения, ремни, шкивы, натяжители, муфты и др. В результате это позволяет:

  • уменьшить количество деталей в спецификации;
  • упростить сборку и сэкономить время на монтаж;
  • снизить затраты (за счет того, что не требуется докупать лишние детали и их устанавливать).

Наконец, еще одним преимуществом прямых приводов можно считать уменьшение шума. К примеру, прямые приводы Kollmorgen имеют уровень шума всего лишь 20 дБ, что превосходит показатели сервосистем с механическими передачами.

Процесс рекуперации

Рекуперация происходит при изменении направления (знака) момента нагрузки по отношению к вращающему моменту серводвигателя. Если энергия рекуперации невелика, она накапливается на конденсаторах звена постоянного тока, повышая напряжение на них.

Если разница абсолютных значений моментов нагрузки и серводвигателя составляет значительную величину, напряжение на конденсаторах шины постоянного тока может превысить пороговый уровень. В этом случае энергия рекуперации сбрасывается в тормозной резистор.

  • гибридный шаговый двигатель с габаритами NEMA 23 и 34;
  • преобразователь частоты на основе высокопроизводительного DSP процессора;
  • блок управления (сервоконтроллер и программируемый логический контроллер в одном корпусе);
  • датчик позиции вала мотора.

Базовым движущим элементом сервопривода — является электродвигатель (так называемый «сервомотор» или «серводвигатель«). Электродвигатель — это электромеханическое устройство (машина) для преобразования электрической энергии в механическую.

Электродвигатель (или электромотор) состоит из двух основных частей: из статора, часто неподвижной части и из ротора (или якоря) — подвижной вращающейся части. Электродвигатели бывают разных типов и конструкций. Каждый тип электродвигателя имеет свои особенности и, соответственно, эксплуатационные характеристики, которые определяют применение электродвигателя на практике.

Применение сервоприводов

Шаговые электродвигатели — применяются в основном в бюджетных решениях сервоприводов.

Шаговый двигатель представляет собой бесколлекторное устройство электромеханического типа, имеющее несколько обмоток. На шаговый двигатель подаются короткие электроимпульсы, при помощи драйвера, которые последовательно активируют каждую из обмоток и приводят в движение ротор, вызывая угловые дискретные (или так называемые шаговые) перемещения. От сюда и берется название «шаговый» электродвигатель.

Синхронные электродвигатели — универсальные сервоприводы для для высокоточных применений и пр.

Асинхронные электродвигатели — универсальные сервоприводы для насосной и компрессорной техники, подъемных механизмов и пр.

Линейные электродвигатели — относительно дорогие, сверхточные сервоприводы для скоростного перемещения полезной нагрузки, для высокоточных порталов, прецизионные станки, научное оборудование и пр.

Типы сервоприводов

Конструктивно сервопривод СПШ можно разделить на следующие основные блоки:

  • гибридный шаговый двигатель с габаритами NEMA 23 и 34;
  • преобразователь частоты на основе высокопроизводительного DSP процессора;
  • блок управления (сервоконтроллер и программируемый логический контроллер в одном корпусе);
  • датчик позиции вала мотора.

Сервопривод — конструктивные особенности

Если блок-схема на рисунке выше не реализуема, следующая болк-диаграмма разделяет серво-петли на внутреннюю и внешнюю:

Сервоприводы — в действии

Сервоприводы и сервомоторы для ЧПУ — в Сервотехнике!

Компания «Сервотехника» более 20 лет поставляет серводвигатели (сервомоторы) следующих производителей: асинхронные серводвигатели Fukuta, серводвигатели фирмы KEB (Германия), сервомоторы компании LS Mecapion и сервоприводы Wittenstein. Имеются собственные разработки серводвигателей, производимые внутри России на собственном заводе. Вся продукция сертифицирована и имеет официальную сервисную гарантию

Купить — Сервопривод (серводвигатель)

В Сервотехнике – Вы можете купить комплектные сервоприводы, серводвигатели/сервомоторы, высоконадежные промышленные частотные преобразователи, редукторы и мотор редукторы известных европейских производителей.

Процесс рекуперации

Зачастую запускается при переключении режимов работы сервомотора: что это такое? Это возвратная энергия, которая выделяется при смене знака (направления движения) относительно вращающего момента. Обычно она не слишком большая, но все равно собирается на конденсаторах, увеличивая, таким образом, напряжение на звене постоянного тока.

В тех же случаях, когда данное неравенство абсолютных значений достигнет серьезной отметки, пороговый уровень емкости шины будет пробит. И тогда все излишки будут сброшены в тормозной резистор.

Мы постарались рассмотреть все особенности данных механизмов и подчеркнуть удобство и перспективность их использования. Предлагаем также взглянуть на схемы сервоприводов, фото и видеоролики на эту тему – чтобы вы могли дополнить свое представление.

Виды, технические характеристики, отличия

На сегодняшний день, существует несколько видов сервомоторов. Наиболее используемые механизмы можно представить по способу их действия следующим списком:

  • механические;
  • электронные;
  • электротермические;
  • дистанционные.

Механические

Самый простой прибор для управления. Он не представляет сложный механизм. Для регулировки степени нагрева нужного контура достаточно будет повернуть рукой головку прибора на возвратной гребёнке влево или вправо соответственно для увеличения или уменьшения нагрева петли тёплого пола. Устанавливать ручной вентиль целесообразно там, где система отопления состоит из 2 – 3 контуров и особая автоматика не требуется.

Последующая настройка не требуется так, как регулировка происходит автоматически. Одним из достоинств механического приспособления является невысокая стоимость и долгий срок службы. К недостаткам можно отнести то, что отсутствует возможность программирования работы сервопривода коллектора для тёплого пола. Поэтому, покидая жилище, хозяин должен устанавливать необходимый температурный режим вручную.

Электронные

Электронные модели оснащены жидкокристаллическими дисплеями, на которых отображаются этапы работы сервоприводов.

Это можно делать, как автоматически, так и вручную.

Электротермические

Приборы данного вида являются двухпозиционными исполнительными механизмами в автоматизированных системах тёплых полов. На корпусе сервопривода расположены два светодиода. Зелёный свет горит при подаче напряжения на привод, синий индикатор загорается, когда клапан открыт. Если питание отключено, оба индикатора гаснут.

Дистанционный

Главным отличием от других моделей дистанционный сервопривод можно программировать онлайн. Сервопривод имеет два датчика, которые отслеживают изменения температуры снаружи и внутри помещения. Дистанционные приборы имеют 9 режимов эксплуатации. Помимо этого, регуляторы способны выдавать информацию на дисплей термостата о количестве потреблённой электроэнергии.

Кроме этого, существуют приводы закрытого и открытого типа. Первые находятся в закрытом положении по умолчанию, а вторые практически всегда открыты.

Характеристики сервоприводов

Устройства выпускаются аналогового и цифрового типов. Приводы внешне ничем не отличаются, но различие между ними существенное. Последние обладают более точной отработкой команд, поскольку управление производится микропроцессорами. Для сервоприводов пишутся и вводятся программы. Аналоговые устройства работают от сигналов микросхем. Их преимуществами являются простое устройство и меньшая цена.

Основными параметрами для выбора являются следующие:

  1. Питание. Подача напряжения производится по трем проводам. По белому передают импульс, через красный — рабочее напряжение, черный или коричневый является нейтральным.
  2. Размеры: большие, стандартные и микроустройства.
  3. Скорость. От нее зависит, за какой промежуток времени вал повернется на угол 600. Недорогие устройства обладают скоростью 0,22 сек. Если требуется высокое быстродействие, она составит 0,06 сек.
  4. Величина момента. Параметр является приоритетным, поскольку при малом вращающем моменте управление затрудняется.

Общие принципы работы серводвигателей (сервомоторов)

Серводвигатели включают в свой состав небольшой двигатель постоянного тока, редуктор и схему управления, содержащую переменный резистор, дающий возможность установить выходной вал серводвигателя под определенным углом. Поэтому серводвигатели очень удобны для проектов, где требуется осуществлять весьма быстрое и относительно точное перемещение какого-либо рабочего органа.

Типы серводвигателей

Серводвигатели часто используются в радиоуправляемых моделях автомобилей для поворота рулевых колес или в моделях радиоуправляемых самолетов – для поворота управляющих поверхностей (рулей). На следующем рисунке показаны два серводвигателя разных размеров.

Серводвигатель справа представляет собой так называемый стандартный серводвигатель. Это наиболее распространенный тип серводвигателя. Такие серводвигатели достаточно часто имеют одинаковые размеры и монтажные расстояния между отверстиями. Намного меньший (и более легкий) серводвигатель слева предназначен для летательных аппаратов. Эти серводвигатели называются сервоприводами 9g .

Сервоприводы с более высоким качеством исполнения и более высоким крутящим моментом имеют редуктор с шестернями из металла, а не из нейлона. Большинство серводвигателей работают на номинальном напряжении питания около 5 В при допустимом диапазоне питающих напряжений от 4 до 7 В. Подключение любительских сервоприводов обычно осуществляется через провода, заканчивающиеся 3-контактным разъемом: питание +, питание — и управляющий сигнал.

Большие и иногда весьма мощные серводвигатели также доступны для использования, но они не так стандартизированы, как любительские маломощные сервомашинки.

Устройство сервопривода

Сервопривод (см. рисунок) состоит из электродвигателя, постоянного тока, приводящего в действие редуктор, уменьшающий скорость вращения двигателя и, в то же время увеличивающий крутящий момент на валу. Для контроля положения выходного вала он соединен с датчиком положения (как правило, это переменный резистор). Для управления мощностью и направлением, в котором поворачивается двигатель сервопривода, схема управления использует входной сигнал от датчика положения в сочетании с сигналом управления, задающим требуемое положение.

Блок управления, получив через сигнал управления величину желаемого положения вала, вычитает из него величину действительного его положения и вырабатывает «сигнал ошибки», который может быть положительным или отрицательным. Этот «сигнал ошибки» подается на питание двигателя, заставляя его изменить положение вала в нужном направлении. Чем больше разница между желаемым и действительным положением выходного вала, тем быстрее двигатель будет поворачиваться к желаемой позиции. Чем ближе к нулю становится значение ошибки (рассогласования), тем меньше становится питание двигателя.

Управление серводвигателем

Управляющий сигнал на серводвигатель — это не напряжение, как можно было бы ожидать, а сигнал широтно-импульсной модуляции (ШИМ). Этот сигнал является стандартным для всех любительских сервомашинок и выглядит так, как показано на следующем рисунке.

Серводвигатель ожидает прихода импульса управления каждые 20 мс. Импульс длительностью 1,5 мс установит серводвигатель в центральное положение, соответствующее повороту выходного вала на 90°. Более короткие импульсы в 1,0 мс установят выходной вал в начальное положение — 0°, а импульсы в 2,0 мс — крайнее положение — 180°. В реальности этот диапазон может быть немного меньше, чем полные 180°, без укорочения импульсов на одном конце и удлинения на другом. Не редкость и ситуация, когда для 0° нужен импульс 0,5 мс, а для 180° — 2,5 мс.

Назначение контактов сервомотора

Представлено на следующем рисунке. Я думаю, здесь все просто и понятно.

1. Red (красный) = Положительное напряжение питания (от 4.8V до 6V)2. Brown (коричневый) = Ground (земля)3. Orange (оранжевый) = Control Signal – управляющий сигнал (PWM Pin – контакт ШИМ)

Асинхронные сервомоторы.

Значительно лучшие динамические показатели имеют асинхронные электродвигатели
специально разработанные для использования в сервосистемах.
Основные отличия асинхронных серводвигателей от общепромышленных э.д.:

  • меньший зазор статор-ротор, за счет чего достигается
    снижение эффекта проскальзывания;
  • термостойкая изоляция, позволяет работать с перегрузками;
  • наличие термодатчика в обмотке статора, для защиты от перегрева;
  • наличие независимого вентилятора охлаждения для эффективного отвода тепла;
  • наличие датчика частоты вращения на валу, в большинстве случаев используется
    инкрементальный энкодер;
  • квадратный корпус аналогичный конструктиву двигателей постоянного тока
    упрощает замену приводов при ремонте и модернизации станков;

Электродвигатели предназначенные для работы в системах серворивода могут быть
расчитаны на номинальную частоту отличную от промышленной сети 50Гц.
Такие электродвигатели недопустимо включать в сеть без преобразователя частоты.
Так-как это приведет к быстрому перегреву и выходу из строя.

В качестве датчика частоты вращения и положения ротора для асинхроных
серводвигателей обычно используются инкрементальные энкодеры.

Сервосистема на базе асинхронного серводвигателя и преобразователя частоты
с обратной связью по своим характеристикам аналогична с приводам постоянного тока.

При модернизации станков, когда требуется замена устаревших и изношенных
приводов постоянного тока. Асинхронная сервосистема позволит модернизировать
оборудование, отказатся от электродвигателей с требующим обслуживания щеточным
узлом, от устаревшей электроники управления ДПТ , при этом сохранив
механические и электрические характеристики.

Для регулирования скорости вращения асинхронного элекродвигателя подходят
большинство преобразователей частоты с обратной связью :

  • Преобразователь частоты KEB COMBIVERT F5 Multi
  • Преобразователь частоты Control Techniques Unidrive SP
  • Преобразователь частоты Danfoss VLT AutomationDrive

Устройство и принцип работы

Редуктор без дополнений газовый или гидравлический, подразумевает механическое устройство для изменения угловой скорости и крутящего момента. Он работает по принципу Золотого правила, когда передаваемая вращением мощность практически не изменяется, уменьшается на КПД.

Устройство

Простейшее устройство редуктора, это зацепление из шестерни и зубчатого колеса. Крутящий момент передается через непосредственный контакт зубьев – элементов детали. Они движутся с одинаковой линейной скоростью, но разной угловой. Количество вращений шестерни и колеса за единицу времени разное, зависит от диаметров деталей и количества зубьев.

Шестерни и колеса неподвижно закреплены на валах или изготовлены совместно с ними. В корпусе может быть от одной до нескольких пар зубчатых зацеплений. На сборочном чертеже редуктора хорошо видно его устройство и составные части:

  • корпус;
  • крышка корпуса;
  • пары в зацеплении;
  • валы;
  • подшипники;
  • уплотнительные кольца;
  • крышки.

Корпус в самом низу имеет отверстие для слива масла и приспособление контроля уровня смазочных материалов, глазок или щуп. Разъем с крышкой совпадает с плоскостью расположения осей.

На кинематической схеме редуктора схематически указаны зубчатые соединения, расположений валов и направление вращения. Также показан тип зуба, прямой или наклонный. По кинематической схеме можно определить количество ступеней, передаточное число и другие характеристики, как работает данный редуктор.

Принцип действия

Принцип работы механического редуктора основан на передаче вращательного момента от одного вала другому посредством взаимодействия зубчатых деталей, неподвижно закрепленных на них. Линейная скорость зубьев одинаковая. Она не может быть разной, поскольку контакт жесткий.

Принципом действия редуктора является давление зуба на поверхность аналогичного со смежной детали и передача при этом усилия, двигающего ведомое колесо. В результате скорость вращения уменьшается. На выходном валу создается усилие, которое способно привести в движение исполняющий механизм.

Главная пара всегда первая, быстроходная шестерня или червяк, соединенный с двигателем и соответствующее ему колесо. По ее типу определяется и весь узел. Количество ступеней равно количеству зацеплений, имеющих передаточное число больше 1.

Кроме рабочих шестерен могут использоваться паразитки – шестерни, которые не изменяют крутящий момент, только направление вращения колеса и соответственно вала, на котором оно расположено.

Маркировка

В условном обозначении редуктора имеется ряд цифр и букв, указывающих на его параметры и тип. Первым стоит указание на количество ступеней и вид зубчатого зацепления:

  • цилиндрическое – Ц;
  • червячное – Ч;
  • коническое – К;
  • глобоидное – Г;
  • волновые – В;
  • планетарное – П.

Комбинированные модели обозначаются несколькими буквами, начиная с первой пары:

  • цилиндрически-червячные – ЦЧ;
  • червячно-цилиндрические – ЧЦ;
  • конически-цилиндрические – КЦ.

Количество передач данного вида указывается цифрой перед буквой.

Горизонтальное расположение считается нормой и не имеет своего обозначения. Для вертикального узла после обозначения типа передач ставится буква В. Б – означает быстроходную модель. За ним ставится условное числовое обозначение варианта сборки.

Далее указывается расстояние между осями ведущего и выходного вала, передаточное число цифрами и форма выходного вала буквенным обозначением, например, Ц – цилиндрический хвостовик, К – конический.

В маркировке может присутствовать указание на климатическое исполнение, например, для тропиков, северных районов, по какому госту выполнено.

Например: 1Ц2У-250-31,5-22-М-У2. Двухступенчатый цилиндрический с горизонтальным расположением. Межцентровое расстояние валов тихоходной ступени 250 мм, передаточное число 31,5. Вариант сборки узла 22, хвостовик по типу муфты, климатическое исполнение соответствует ГОСТ 15150-69.

Электрический привод – мотор и передаточный узел в одном корпусе, имеет несколько отличающуюся маркировку. Вначале стоит буквенное обозначение марки сборного привода, указывается скорость вращения выходного колеса, поскольку она постоянна, соединена с одним электродвигателем.

Достоинства серводвигателей

Система абсолютного позиционирования

Основной смысл использования сервоприводов заключается в том, что они позволяют компьютеру устанавливать определенный угол, к которому будет двигаться двигатель.

Высокий крутящий момент на высокой скорости

Благодаря системе зубчатых передач сервоприводы способны создавать высокий крутящий момент, а также двигаться на высоких скоростях.

Высокий удерживающий момент

Другое преимущество использования сервопривода состоит в том, что когда он установлен под определенным углом, сервопривод будет противодействовать силам, пытающимся вывести его из установленного положения. Если сила, которая воздействует на сервопривод, слишком велика для удержания сервопривода, и двигатель перемещается из своего положения, после снятия силы он вернется назад.

Оценка характеристик серводвигателей

Устройство

Рисунок 2. Устройство сервопривода

Сервопривод включает в свой состав такие элементы как:

  • Приводной механизм – к примеру, это может быть электромотор. Благодаря ему становится возможным управление скоростью нужного диапазона в определённый временной момент;
  • Датчики – осуществляют контроль над необходимыми параметрами. Могут быть предназначены для отслеживания положения, усилия, поворота угла или скорости вращения объекта;
  • Блок управления – немало важный элемент, так как именно благодаря ему происходит поддержание требуемых параметров в автоматическом режиме;
  • Блок питания – питает данный механизм.

Интересно, что самый простой управляющий блок чаще всего создаётся с использованием схемы сравнений значений на датчике и необходимых значений при подаче напряжения определённой полярности на привод.

Применение сервоприводов

Сегодня они широко используются в самых разных областях:

  • в робототехнике и при создании манипуляторов; чтобы управлять ими, в свою очередь, берут аппаратно-программные средства ардуино;
  • для реализации системы теплого пола – они помогают автоматически регулировать температуру, понижая или повышая ее по мере необходимости;
  • в автомобилестроении – для интеграции с замками, подачи жидкости на печку, переключения скоростей в АКПП;
  • в грузовом оборудовании – задают режимы захвата, подъема, транспортировки, опускания и отпускания предметов самого разного веса и габаритов.

Это далеко не все возможные сферы и ниши – данные силовые агрегаты, по сути, актуальны везде, где только требуется точно контролировать движение вала.

Вид привода.

Вид сервопривода это его основная качественная характеристика. В завимости от рассматриваемого аспекта, сервоприводы могут быть синхронные и асинхронные, щеточные и бесщеточные. Каждый вид сервоприводов обладает своими преимуществами.

Асинхронный сервопривод

Это бесщеточные приводы на базе асинхронного двигателя с установленным энкодером, сигнал с которого подключен к преобразователю частоты, поддерживающему обратную связь. Подобные сервоприводы часто ставятся на шпиндели фрезерных станков, так как они развивают достаточно высокую скорость вращения, необходимую для обработки — до 10000 об/мин и более. Энкодеры на них при этом ставят небольшого разрешения, так как задачи прецизионного позиционирования от них не требуется. Эти сервоприводы отличаются тем, что их скорость-моментная характеристика заметно зависит от оборотов.

Описание [ править | править код ]

Сервоприводом является любой тип механического привода (устройства, рабочего органа), имеющий в составе датчик (положения, скорости, усилия и т. п.) и блок управления приводом (электронную схему или механическую систему тяг), автоматически поддерживающий необходимые параметры на датчике (и, соответственно, на устройстве) согласно заданному внешнему значению (положению ручки управления или численному значению от других систем).

Проще говоря, сервопривод является «автоматическим точным исполнителем» — получая на вход значение управляющего параметра (в режиме реального времени), он «своими силами» (основываясь на показаниях датчика) стремится создать и поддерживать это значение на выходе исполнительного элемента.

К сервоприводам, как к категории приводов, относится множество различных регуляторов и усилителей с отрицательной обратной связью, например, гидро-, электро-, пневмоусилители ручного привода управляющих элементов (в частности, рулевое управление и тормозная система на тракторах и автомобилях), однако термин «сервопривод» чаще всего (и в данной статье) используется для обозначения электрического привода с обратной связью по положению, применяемого в автоматических системах для привода управляющих элементов и рабочих органов.

Сервоприводы в настоящее время применяются в высокопроизводительном оборудовании следующих отраслей: машиностроение; автоматические линии производства: напитков, упаковки, стройматериалов, электроники и т. д., подъемно-транспортная техника; полиграфия; деревообработка, пищевая промышленность. [ источник не указан 817 дней ]

Как работают серводвигатели?

Конструкция серводвигателя немного сложнее, чем у коллекторного двигателя постоянного тока.

Основные рабочие компоненты серводвигателя

Ядро серводвигателя, реальный двигатель внутри сервопривода, представляет собой коллекторный двигатель постоянного тока, такой же, как те, что мы обсуждали ранее.

Однако в дополнение к этому двигателю имеется пара других компонентов, которые делают сервопривод уникальным среди других типов двигателей. Это всё связано с позиционированием.

В верхней части двигателя, под верхней крышкой, находится набор шестеренок. Эти шестеренки выполняют две основные задачи:

  1. Они дают двигателю механическое преимущество, создавая больший крутящий момент, по сравнению с тем, что дает двигатель самостоятельно.
  2. Шестерни соединяют двигатель и датчик положения. В большинстве сервоприводов датчик положения – это потенциометр. Потенциометр позволяет сервоприводу точно знать угол наклона вала двигателя (так называемого выходного вала сервопривода).

Наконец, сервоприводом управляет встроенная плата, которая переводит команды, полученные по сигнальному проводу от подключенного компьютера, в движения двигателя.

Какие сервоприводы применяются?

Широкое распространение серводвигателей повлекло за собой появление их различных видов, которые можно разделить по следующим критериям:

Типы привода:
  • Вращательные Асинхронные – дешевые, точны, даже, при низких оборотах;
  • Синхронные – более дорогие и быстрые при разгоне;

Линейные – самый быстрый разгон, высокая точность, долговечность. Примеры: актуатор, линейный модуль (см. рис.), линейные серводвигатели.

Принцип действия:
  • Электромеханический – электромотор и редуктор;
  • Гидромеханический – поршневой цилиндр обеспечивает более высокую скорость передвижения.

Материал редуктора:

  • Полимерный – высокая износостойкость, малый вес, чувствительность к ударным нагрузкам;
  • Металлический – изнашивается быстрее всех, но устойчив к механическим нагрузкам;
  • Карбоновые – средний вариант между полимерными и металлическими.
Тип ротора:

Монолитный ротор – вибрирует при вращении, невысокая точность;

Способ управления:
  • Аналоговый – простой и долговечный, малая ровность хода двигателя;
  • Цифровой – ускоренная реакция на управляющий сигнал, повышенная точность.

Режимы управления

Существуют три основных режима работы сервопривода переменного тока.

Режим управления положением.

Главное в этом режиме – контроль за углом поворота вала ротора. Управление производится последовательностью импульсов, которые могут приходить, например, с контроллера. Этот режим используется для точного позиционирования различных узлов технологического оборудования.

Комбинация импульсов для управления положением может передавать информацию не только по положению, но также по скорости и направлению вращения двигателя. Для этого могут использоваться три типа сигналов: 1) квадратурные импульсы (со сдвигом фаз на 90 градусов), 2) импульсы вращения по или против часовой стрелки, действующие поочередно и 3) импульсы скорости и потенциал направления, подающиеся на два входа.

Как правило, во всех сервоусилителях входы управления именуются как PULSE, SIGN.

Режим управления скоростью.

В данном случае управление производится аналоговым сигналом. Значения скорости также могут переключаться на фиксированные величины подачей сигналов на соответствующие дискретные входы. В случае использования разнополярного аналогового управляющего сигнала возможна смена направления вращения серводвигателя.

Режим управления скоростью схож с работой асинхронного двигателя, управляемого преобразователем частоты. Задаются такие параметры, как время разгона и замедления, максимальная и минимальная скорости и другие.

Режим управления моментом.

В этом режиме двигатель может вращаться либо стоять на месте, но при этом момент на валу будет заданным. Управление может производиться дискретным либо аналоговым двухполярным сигналом. Этот режим может использоваться для машин, где необходимо менять усилие прижима, давление и т. п.

Оценка текущего момента двигателя, необходимого для управления, производится за счет встроенного датчика тока.

Режимы управления

Работа сервопривода может осуществляться в трех разных форматах. Рассмотрим каждый из них.

Контроль положения

Здесь нужно сохранять заданный угол поворота вала, подавая последовательность сигналов. Пусть они идут с контроллера – таким образом, можно обеспечить точное позиционирование, что особенно актуально для узлов производственных станков.

Обратите внимание, с помощью совокупности импульсов не проблема задать информацию не только о положении в пространстве, но и о векторе вращения или скорости движения. Сделать это можно одним из трех способов – направляя напряжение:

  • со сдвигом фазы на 90 градусов;
  • сразу на два входа (SIGN, PULSE – стандартные названия);
  • с перемещением по часовой стрелке или против.

Контроль скорости

Здесь сервоуправление – это увеличение или уменьшение аналогового сигнала на дискретную величину при его подаче на соответствующие обмотки. А если он еще и разнополярный, тогда не составляет труда быстро менять направление вращения.

Данный режим напоминает эксплуатацию асинхронного силового агрегата с преобразователем частоты. Потому что в ее рамках требуется постоянно выполнять разгон и замедление, задавать минимумы и максимумы и тому подобное. Главное – реализовывать не слишком сложный алгоритм, чтобы не превращать рядовую практическую задачу в непосильный труд программирования.

Контроль момента

В данном случае назначение сервопривода – обеспечивать стабильное число оборотов, вне зависимости от того, вращается двигатель или нет. Эта цель достигается путем подачи или дискретного сигнала, или аналогового двухполярного. Метод более чем актуален для оборудования, в процессе эксплуатации требующего смены давления, прижима или других параметров.

Внимание, силовой агрегат должен быть дополнительно оснащен встроенным датчиком тока, ведь именно последний и оценивает значение текущего момента, чтобы потом электроника могла сравнить его с необходимой величиной

UK VODOKANAL